Lesson 4 - Use of solubility tables to predict and identify precipitation reactions between ions in solution.

Visit this <u>link</u> to refresh yourself with the writing of chemical and ionic equations of precipitate reactions.

Consider the solubility table shown on the right when answering the questions below.

1. Complete the table below. The first one is done for you.

Soluble Ionic Compound	s	Important Exceptions
Compounds containing	NO ₃	None
	C ₂ H ₃ O ₂	None
	CÎ-	Compounds of Ag+, Hg22+, and Pb2+
	Br ⁻	Compounds of Ag+, Hg22+, and Pb2+
	Г	Compounds of Ag+, Hg22+, and Pb2+
	SO ₄ ²⁻	Compounds of Sr2+, Ba2+, Hg22+, and Pb2+
Insoluble Ionic Compour	ıds	Important Exceptions
Compounds containing	S ²⁻	Compounds of NH ₄ ⁺ , the alkali metal cations, and Ca ²⁺ , Sr ²⁺ , and Ba ²⁺
	CO ₃ ²⁻	Compounds of NH ₄ ⁺ and the alkali metal cations
	PO ₄ ³⁻	Compounds of NH ₄ ⁺ and the alkali metal cations
	OH ⁻	Compounds of the alkali metal cations, and Ca ²⁺ , Sr ²⁺ , and Ba ²⁺

Activity	Precipitate	Spectator ions		
Silver nitrate solution is mixed with an equal volume of sodium chloride	AgCl Silver chloride	Na⁺, NO₃⁻	Chemical equation - AgNO ₃ (aq) + NaCl(aq) -> AgCl(s) + NaNO ₃ (aq) Ionic equation – Ag $^+$ (aq) + Cl $^-$ (aq) -> AgCl(s)	
Sodium sulfate solution is mixed with an lead nitrate solution	PbSO₄ Lead sulfate	Na⁺, NO₃⁻	Chemical equation $-Na_2SO_4(aq) + Pb(NO_3)_2(aq) -> PbSO_4(s) + 2NaNO_3(aq)$ Ionic equation $-SO_4^{2-}(aq) + Pb^{2+}(aq) -> PbSO_4(s)$	
Ammonium carbonate solution is mixed with a solution of calcium nitrate	Calcium carbonate	NH ₄ +, NO ₃ -	Chemical equation $-(NH_4)_2CO_3(aq) + Ca(NO_3)_2 -> CaCO_3(s) + 2NH_4NO_3(aq)$ Ionic equation $-CO_3^{2-}(aq) + Ca^{2+}(aq) -> CaCO_3(s)$	
Ammonium chloride solution is mixed with a solution of sodium carbonate	Nil		Chemical equation Ionic equation	
Solid calcium nitrate is placed in a sodium sulfate solution.	CaSO ₄ Calcium sulfate	Na⁺, NO₃⁻	Chemical equation $-Ca(NO_3)_2 + Na_2SO_4(aq) -> CaSO_4(s) + 2NaNO_3(aq)$ Ionic equation $-Ca^{2+}(aq) + SO_4^{2-}(aq) -> CaSO_4(s)$	
Ammonium sulfide solution is mixed with an iron(iii) nitrate solution.	Fe ₂ S ₃ (s) Iron sulfide	NH ₄ +,NO ₃ -	Chemical equation $-3(NH_4)_2S(aq) + 2Fe(NO_3)_3(aq) -> Fe_2S_3(s) + 6NH_4NO_3(aq)$ Ionic equation $-3S^{2-}(aq) + 2Fe^{3+}(aq) -> Fe_2S_3(s)$	
Ammonium phosphate solution is mixed with a solution of calcium nitrate	Ca ₃ (PO ₄) ₂ Calcium phosphate	NH ₄ +,NO ₃ -	Chemical equation $-2(NH_4)_3PO_4(aq)+3Ca(NO_3)_3(aq)->Ca_3(PO_4)_2(s)+6NH_4NO_3(aq)$ Ionic equation $-2PO_4^{3-}(aq)+3Ca^{2+}(aq)->Ca_3(PO_4)_2(s)$	