Lesson 4 - Use of solubility tables to predict and identify precipitation reactions between ions in solution.

Visit this link to refresh yourself with the writing of chemical and ionic equations of precipitate reactions.

Consider the solubility table shown on the right when answering the questions below.

1. Complete the table below. The first one is done for you.

| Solubility of some common ionic compounds |  |  |
| :--- | :--- | :--- |


| Activity | Precipitate | Spectator ions |  |
| :---: | :---: | :---: | :---: |
| Silver nitrate solution is mixed with an equal volume of sodium chloride | AgCl Silver chloride | $\mathrm{Na}^{+}, \mathrm{NO}_{3}{ }^{-}$ | Chemical equation $-\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq})->\mathrm{AgCl}(\mathrm{s})+\mathrm{NaNO}_{3}(\mathrm{aq})$ Ionic equation $-\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})->\mathrm{AgCl}(\mathrm{s})$ |
| Sodium sulfate solution is mixed with an lead nitrate solution | $\mathrm{PbSO}_{4}$ Lead sulfate | $\mathrm{Na}^{+}, \mathrm{NO}_{3}{ }^{-}$ | Chemical equation $-\mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)->\mathrm{PbSO}_{4}(s)+2 \mathrm{NaNO}_{3}(a q)$ Ionic equation $-\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{Pb}^{2+}(\mathrm{aq})->\mathrm{PbSO}_{4}(\mathrm{~s})$ |
| Ammonium carbonate solution is mixed with a solution of calcium nitrate | Calcium carbonate | $\mathrm{NH}_{4}^{+}, \mathrm{NO}_{3}{ }^{-}$ | $\begin{aligned} & \text { Chemical equation }-\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}->\mathrm{CaCO}_{3}(s)+2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq}) \\ & \text { lonic equation }-\mathrm{CO}_{3}^{2-}(\mathrm{aq})+\mathrm{Ca}^{2+}(a q)->\mathrm{CaCO}_{3}(s) \end{aligned}$ |
| Ammonium chloride solution is mixed with a solution of sodium carbonate | Nil |  | Chemical equation Ionic equation |
| Solid calcium nitrate is placed in a sodium sulfate solution. | $\mathrm{CaSO}_{4}$ <br> Calcium sulfate | $\mathrm{Na}^{+}, \mathrm{NO}_{3}{ }^{-}$ | $\begin{aligned} & \text { Chemical equation }-\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})->\mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq}) \\ & \text { Ionic equation }-\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})->\mathrm{CaSO}_{4}(s) \end{aligned}$ |
| Ammonium sulfide solution is mixed with an iron(iii) nitrate solution. | $\mathrm{Fe}_{2} \mathrm{~S}_{3}(\mathrm{~s})$ <br> Iron sulfide | $\mathrm{NH}_{4}{ }^{+}, \mathrm{NO}_{3}{ }^{-}$ | Chemical equation $-3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}(a q)+2 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})->\mathrm{Fe}_{2} \mathrm{~S}_{3}(s)+6 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})$ Ionic equation - $3 \mathrm{~s}^{2-}(a q)+2 \mathrm{Fe}^{3+}(a q)->\mathrm{Fe}_{2} \mathrm{~S}_{3}(s)$ |
| Ammonium phosphate solution is mixed with a solution of calcium nitrate | $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ Calcium phosphate | $\mathrm{NH}_{4}{ }^{+}, \mathrm{NO}_{3}{ }^{-}$ | Chemical equation $-2\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{3}(a q)->\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})$ Ionic equation $-2 \mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})+3 \mathrm{Ca}^{2+}(\mathrm{aq})->\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$ |

